Chem. Ber. 119, 434-443 (1986)

Die Geometrie von Lithium-Komplexen mit koordinativ gebundenen Carbonylverbindungen¹⁾ und die Struktur eines Lithiumdienolates

René Amstutz²⁾, Jack D. Dunitz, Thomas Laube, W. Bernd Schweizer und Dieter Seebach*

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Universitätstr. 16, CH-8092 Zürich (Schweiz)

Eingegangen am 30. Mai 1985

Die Kristallstruktur des Aceton-Solvates von Lithiumbromid und des DMPU-Solvates eines Lithiumdienolates werden beschrieben. Beide bestehen aus dimeren Einheiten mit LiXLiX-Vierringen im Zentrum. Die Komplexierung der Lithiumatome mit den C=O-Gruppen hat eine gewinkelte und nicht die laut Berechnungen stabilere lineare Geometrie. Eine Aufstellung der jetzt bekannten Daten (Tab. 1) zeigt, daß das Li-Atom in derartigen Komplexen sogar oft außerhalb der durch das Carbonyl-C-Atom und seine Bindungspartner aufgespannten Ebene liegt.

The Geometry of Lithium Complexes with Coordinatively¹⁾ Bound Carbonyl Compounds and the Structure of a Lithium Dienolate

The crystal structures of the acetone solvate of lithium bromide and of the DMPU solvate of a lithium dienolate are described. Both consist of dimeric units with a central fourmembered LiXLiX ring. The complexation of the Li atoms with the C=O groups is bent and not linear as found by theoretical calculations. A comparison of the available data (Table 1) shows that the Li atoms in such complexes often even lie outside the plane formed by the carbonyl carbon and its three bonding partners.

Die Geometrie der koordinativen Bindung zwischen einem Lithiumatom oder -ion und dem Sauerstoffatom einer Carbonylgruppe ist für die organische Chemie von großer Bedeutung, da der erste Schritt einer Umsetzung einer lithiumorganischen Verbindung mit einer Carbonylverbindung die koordinative Assoziation der beiden Partner ist³⁻⁵. Daher wurden viele theoretische Berechnungen an Modellsystemen wie $H_2C=0\cdots Li^{\oplus}$ durchgeführt, die alle eine lineare Anordnung der Atome C, O und Li ergaben⁶⁻⁸. Die Röntgenstrukturanalysen von mit Aceton komplexiertem Lithiumbromid (1) und von einem mit N,N'-Dimethyl-N,N'-(1,3-propandiyl)harnstoff (DMPU, 3,4,5,6-Tetrahydro-1,3-dimethyl-2(1H)-pyrimidinon) komplexierten Lithiumdienolat 2, über die wir hier berichten, und von einigen anderen Alkalimetall-Carbonyl-Komplexen aus der Literatur deuten jedoch auf eine bevorzugt gewinkelte Anordnung der Atome C, O und Li hin, wobei das Lithiumatom oftmals nicht in der durch das Carbonyl-C-Atom und seine Bindungspartner aufgespannten Ebene liegt.

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0009-2940/86/0202-0434 \$ 02.50/0

Die Struktur des Lithiumbromid-Aceton-Komplexes

Aus Aceton umkristallisiertes 1 bildet Kristalle mit der Zusammensetzung 1: Me₂CO = 1:2⁹⁾. Die Röntgenstrukturanalyse ergibt, daß im Kristall diskrete Einheiten des Typs [2 1 · 4 Me₂CO] vorliegen, die eine kristallographisch bedingte C₂-Achse enthalten und näherungsweise der Punktgruppe C_{2v} angehören (s. Abb. 1). Der Kern dieses Komplexes wird von einem aus zwei Lithium- und zwei Bromatomen bestehenden, nahezu planaren Vierring gebildet. Der Abstand der Atome von der besten Ebene durch den Vierring beträgt 0.02 Å. Die Li-Br-Abstände betragen abwechselnd 2.55(2) und 2.51(2) Å und liegen damit zwischen den für gasförmiges und für kristallines 1 gefundenen Werten (2.17 Å bzw. 2.75 Å)¹⁰⁾. An jedes Lithiumatom sind neben den beiden Bromatomen des Vierringes noch zwei Acetonmoleküle koordinativ über den Sauerstoff gebunden. Die Li···O-Abstände betragen 2.0(1) bzw. 1.9(1) Å, die Li···O=C-Winkel 145(1) bzw. 144(1)° und die kleinsten Li···O=C-C-Torsionswinkel -10(3) bzw. +2(3)°, d.h. die Lithiumatome liegen näherungsweise in den Aceton-Molekülebenen.

Abb. 1. Stereoskopische ORTEP-Zeichnung des Komplexes [21 · 4 Me₂CO]. Die Ellipsoide wurden auf dem 50%-Niveau gezeichnet

Die Struktur des Dienolat-DMPU-Komplexes

Diese Struktur ist – wie noch immer vieles in der Chemie – eine Zufallsentdeckung. Der cyclische Harnstoff DMPU ("Dimethyl-1,3-propandiyl-urea") ist ein dem HMPT ("Hexamethyl-phosphorsäuretriamid") ähnliches aprotisch dipolares Cosolvens¹¹⁾. Diese beiden Zusätze sind nicht in der Lage, Enolataggregate aufzubrechen, was wir aus der Zusammensetzung mehrerer kristalliner HMPT- oder DMPU-haltiger Komplexe schlossen. Zunächst gelang es in keinem Fall, für die Röntgenstrukturanalyse geeignete Einkristalle solcher Komplexe zu isolieren. Bei Kristallisationsversuchen des Lithiumenolates von Pinakolon¹² (3,3-Dimethyl-2butanon) in Gegenwart von DMPU fielen dann schön ausgebildete Kristalle an, die sich als ein DMPU-Solvat des Dienolats aus dem Aldolkondensationsprodukt zweier Pinakolone (2,2,5,6,6-Pentamethyl-4-hepten-3-on) herausstellten, siehe unten. Beim Erzeugen und Manipulieren des Pinakolonenolates trat also eine Aldoladdition, Wasserabspaltung zum Enon und Deprotonierung zum Dienolat auf, welches mit DMPU auskristallisierte!

Chem. Ber. 119 (1986)

Ein anderer Aspekt der Struktur des DMPU-Komplexes [2 2 2 DMPU] ist bemerkenswert. Die Röntgenstrukturanalyse gestattet die Bestimmung der Geometrie von Supermolekülen, die aktivierten Komplexen ähnlich sind, falls es gelingt, Reaktanden zu co-kristallisieren, also durch "Einsperren" im Kristall den vollständigen Ablauf der Reaktion zu verhindern. Ein eindrucksvolles Beispiel hierfür ist das von *Chioccola* et al.¹³⁾ untersuchte Addukt aus einem Keton und einem Phosphorylid (s. auch Lit.¹⁴⁾). Ein Komplex aus einem Enolat und einer Carbonylverbindung könnte entsprechend Information über die Aldoladdition liefern³⁻⁵⁾. Naturgemäß sollte sich eine unreaktive Carbonylverbindung wie der tetraalkylierte Harnstoff DMPU dafür besonders eignen. In der gefundenen Struktur ließen sich jedoch keinerlei Wechselwirkungen zwischen einem der nucleophilen Atome des Dienolats und dem elektrophilen DMPU-C-Atom feststellen.

Zunächst nahmen wir an, daß wie in den Pinakolon- und Cyclopentanon-Enolat-THF-Komplexen¹²⁾ tetramere Aggregate des Dienolates vorlagen, weil das Verhältnis Enolat: Lösungsmittel DMPU 1:1 war. Im Kristall liegen jedoch annähernd zentrosymmetrische Dimere der Zusammensetzung [$22 \cdot 2$ DMPU] vor (s. Abb. 2).

Abb. 2. Stereoskopische ORTEP-Zeichnung des Komplexes [2 2 · 2 DMPU]. Die Wasserstoffatome der DMPU-Moleküle wurden weggelassen. Die Ellipsoide wurden auf dem 50%-Niveau gezeichnet. Eine Position des ungeordneten C-Atoms eines DMPU wurde durch Punktieren der Rückseite der Hauptellipsen gekennzeichnet

Der Kern dieses Dimeren wird von einem Li-O-Li-O-Vierring gebildet, dessen O-Atome zu den Dienolatmolekülen 2 gehören und dessen Bindungslängen abwechselnd ca. 1.86 und ca. 1.93 Å betragen. Der Abstand zwischen den beiden Li-Atomen beträgt 2.59 Å. Die beiden Dienolatmoleküle liegen in einer S-cis-artigen Konformation vor [die Torsionswinkel C1-C2-C3-C4 und C1'-C2'-C3'-C4' betragen -32(1) bzw. $+30(1)^\circ$; s. Abb. 3]. Die Bindungslängen in den π -Gerüsten der Dienolatmoleküle entsprechen in ihrer Alternanz im wesentlichen der Beschreibung des Moleküls durch eine Grenzformel, in der das Sauerstoffatom eine negative Ladung trägt. Die Abstände der Kohlenstoffatome C4 und C4' zu den Lithiumatomen 1' und 1 betragen 2.61(1) bzw. 2.52(1) Å und deuten auf eine Wechselwirkung der im π -System endständigen C-Atome mit den Lithiumatomen hin. Der jeweils vierte Koordinationspartner der Lithiumatome ist das Sauer-

Chem. Ber. 119 (1986)

stoffatom eines DMPU-Moleküls. Die Positionen der Atome in den DMPU-Molekülen sind teilweise stark ungeordnet, so daß deren Geometrie nicht diskutiert werden kann.

Abb. 3. Oben: Teilstruktur von [2 2 · 2 DMPU]. Unten: Stereoskopische Ansicht des Ausschnittes [Li · 2 · DMPU] aus [2 2 · 2 DMPU]; die eingezeichnete Ebene wird durch die Atome O(1), C(1) und C(2) aufgespannt

Abb. 4. Die wichtigsten geometrischen Daten der Dienolatmoleküle in [2 2 · 2 DMPU]. Die Bindungslängen [Å] und Winkel [°] sind Mittelwerte von den beiden Symmetrie-unabhängigen Molekülen in der Zelle. Die Standardabweichungen betragen 0.01 Å bzw. 0.5°

Diskussion der koordinativen $Li \cdots O(=CR_2)$ -Bindung

Die Geometrie der koordinativen Bindung eines Ethersauerstoffatoms zu Alkaliund Erdalkali-Kationen ist vor drei Jahren gründlich untersucht worden¹⁵⁾. Lithium-Ionen werden bevorzugt in der Nähe der (negativen) C-O-C-Winkelhalbierenden an den Ethersauerstoff, d.h. an ein sp²-Elektronenpaar gebunden, während die größeren Alkali-Ionen bevorzugt an ein sp³-Elektronenpaar gebunden werden. Unsere beiden Strukturen und einige ausgewählte Beispiele aus der Literatur (Recherche im Cambridge File) legen nahe, daß Lithium-Ionen in Komplexen mit Carbonylverbindungen bevorzugt an ein sp²-Elektronenpaar des Carbonylsauerstoffatoms gebunden werden (s. Tab. 1 und Lit.²³).

Tab. 1. Die wichtigsten Daten über die Geometrie einiger Komplexe von Alkalimetallverbindungen mit koordinativ gebundenen Carbonylverbindungen

Nr.	Verbindung ^{a)}	Metall	x	Y	d/Å	uy ^o	ω _x / ⁰	ω _γ / ⁰	Lit.
1	[21-4 CH3COCH3]	Li	Сн _з	снз	2.0(1)	145(1)	+169(3)	-10(3)	
		Li	СНЗ	CH3	1.9(1)	144(1)	+178(2)	+2(3)	
2	[2 2 · 2 DMPU]	Li	N(CH ₃)R	N(CH ₃)R	1.87(1)	153.4(5)	-3(1)	+176.3(9)	
		Li	N(CH ₃)R	N(CH3)R	1.85(1)	156.3(4)	-40(1)	+140(1)	
3	LU-2	Li	NH ₂	NH2	1,8R(3)	149(2)	+151(3)	-30(6)	161
	H2N" "NH2	Li	NH2	NH ₂	1.95(3)	120(2)	-55(3)	+124(3)	'0,
		Li	CH2R	N(CH ₃)R	1.953(6)	125.6(3)	+4.6(5)	-175.3(3)	
	L COL D L CH	Li	CH2R	N(CH3)R	1.937(6)	128.3(3)	+1.6(5)	-177.3(3)	171
4	Hyc-N	Li	сн ₂ я	N(CH3)R	1,904(6)	126.2(3)	~1.0(5)	+176.8(3)	,
		Li	CH ₂ R	N(CH3)R	1.892(6)	126.5(3)	+0.1(5)	+179.6(3)	
5	ывг н уй~ д^Н М^ссоо -	Li	CH ₂ R	NHR	1.95(2)	130.0(7)	+30(1)	-148.6(8)	18}
6	LiBr · HJN - COO" · 2 H20	Li	CHR2	NHR	1.944(9)	146.6(5)	+1 38.2(7)	-44(1)	19)
7	[No.1 - 3 CH3COCH3]	Na	CH3	снз	2,466	151.8	-11.3	+173.6	20)
8		Na	СН _З	снз	2.251	173 ^{b)}	-139 ^b)	+40 ^b)	21)
9	K Sn[(52C202)3Cu(P(C2H2)312] · 2 CH3COCH3	ĸ	СН3	CH3	2.629(7) 2.658(8)	122.9(6) 145.7(7)	-95(1) -10(2)	+84(1) +172.6(9)	22)

^{a)} Bei Verbindungen mit mehreren Sauerstoffatomen wurde das an der Metallkoordination beteiligte Carbonyl-O-Atom fett gezeichnet. – ^{b)} Keine Standardabweichungen verfügbar. Wenn man für alle Atome den gleichen, isotropen Fehler und $\sigma(d) = 0.01$ Å annimmt, so folgt $\sigma(\Theta) = 0.6^{\circ}$, $\sigma(\omega_X) = 5^{\circ}$ und $\sigma(\omega_Y) = 6^{\circ}$.

Allerdings deuten die Beispiele 2, 3, 5 und 6 aus Tabelle 1 an, daß die Geometrie auch erheblich von dieser Idealanordnung abweichen kann, wenn sterische Gründe eine Komplexierung in der Richtung eines sp²-O-Elektronenpaares verhindern. Dies ist besonders auffällig im Beispiel 2, bei dem offensichtlich Packungseffekte ausreichen, um die Koordination des DMPU-Moleküls zu ändern: ein Molekül DMPU wird mit einem Diederwinkel Li $1\cdots O2 = C - N1$ von $-3(1)^\circ$, das andere mit einem Diederwinkel von -40° gebunden, wobei die Li \cdots O-Abstände und die Li $\cdots O = C$ -Winkel nahezu gleich sind (1.86 Å, 156°). Im Beispiel 3 liegt eine durch Harnstoffmoleküle verbrückte, kettenartige Struktur vor, in der jedes Carbonylsauerstoffatom an zwei Lithium-Ionen in unterschiedlicher Weise gebunden ist [Diederwinkel Li $\cdots O = C - N$: 30(6) bzw. 55(3)°].

Die in Tabelle 1 zusätzlich aufgeführten Aceton-Solvate schwererer Alkali-Derivate weisen eine bemerkenswerte Vielfalt der Orientierung der Metall…Aceton-Bindung in bezug auf das Acetonmolekül auf. Im Beispiel 7 sind die Acetonmoleküle ähnlich wie an das Lithiumbromid im Beispiel 1 gebunden, während im Beispiel 8 eine fast lineare Anordnung Na…O = C auftritt. Im Beispiel 9 schließlich sind 2 Acetonmoleküle in sehr verschiedener Weise an ein und dasselbe Kalium-Ion gebunden: einmal erfolgt die Bindung wie in [2 1 · 4 Me₂CO], einmal scheint das Kalium-Ion an ein π -p-Orbital des Sauerstoffatoms gebunden zu sein. Eine fast lineare Anordnung Li…O=C fanden auch *Chakrabarti, Venkatesan* und *Rao*^{23a)} in dem komplexen Kation Li[⊕] · 4 CH₃CONHCH₃, bei dem allerdings Fehlordnung der Liganden auftrat.

Diese Vielfalt in der koordinativen Bindung von Lithium-Ionen (und anderen Alkalimetall-Ionen) zu Carbonylsauerstoffatomen deutet auf eine flache Potentialfläche des Systems bezüglich des Winkels Li \cdots O=C und des Torsionswinkels Li \cdots O=C-X hin, was trotz der Diskrepanz zwischen Theorie⁸⁾ und Röntgenstrukturdaten bezüglich des Minimums der Potentialfläche mit theoretischen Berechnungen übereinstimmt.

Diskussion der Geometrie von 2

Das Dienolat 2 und das von uns vor vier Jahren beschriebene Pinakolonenolat 3^{12} , das im Kristall Tetramere der Zusammensetzung [4 3 · 4 THF] bildet, weisen in den π -Systemen folgende Bindungslängen²⁴⁾ auf:

	2	3	
 01 - C1 C1 = C2 C2 - C3 C3 = C4	1.312(7) 1.352(8) 1.464(9) 1.347(9)	1.347(7) 1.338(9)	J _{OLi}

Die in 2 kürzere Bindung O1-C1 deutet auf einen geringen Anteil der Resonanzformel 4b bei der Beschreibung von 2 hin, wobei der Effekt bei den C-C-Bindungen kaum zu beobachten ist.

Dies kann eine Folge der Wechselwirkung von C4 mit einem Lithium-Ion sein, denn die Li-C4-Gerade schließt mit der Symmetrieachse des p-Orbitals an C4

einen Winkel von ca. 30° ein $[Li1'-C4-C3 = 92.0(4)^\circ, Li1-C4'-C3' = 90.8(5)^\circ; Li1'-C4-C3-C2 = +61.3(6)^\circ, Li1-C4'-C3'-C2' = -64.2(6)^\circ].$ Ein extremes Beispiel für derartige Wechselwirkungen findet man im Natriumenolat von Acetylcyclopentadien²⁵⁾. Die nichtplanare Anordnung der Atome O1, C1, C2, C3 und C4 ist wahrscheinlich eine Folge der sterischen Wechselwirkung des Dienolat-Sauerstoffatoms mit dem *cis*-ständigen Wasserstoffatom des im π -System endständigen Kohlenstoffatoms C4. Der Abstand O1…H beträgt 2.37 Å in der gefundenen Konformation und ist damit schon etwas kleiner als die Summe der van-der-Waals-Radien (2.6 Å); bei einer planaren Konformation betrüge dieser Abstand nur noch 2.05 Å und würde Spannung bewirken. Die Resonanz im π -System wird durch Verdrillung um die C2-C3-Bindung nur schwach beeinflußt.

Experimenteller Teil

Herstellung von Kristallen mit der Zusammensetzung Lithiumbromid $\cdot 2$ Aceton $[1 \cdot 2 (CH_3)_2CO]$: Durch Abkühlen einer bei 64°C gesättigten Lösung von 1.0 g wasserfreiem 1 in absol. Aceton auf Raumtemp. erhielt man farblose Nadeln. – Das Verhältnis 1: Aceton wurde durch Fällung von AgBr aus einer Lösung von 300–400 mg der Kristalle in verdünnter Salpetersäure mit Silbernitrat gravimetrisch bestimmt $[1:(CH_3)_2CO] = 1.83]$. Die Dichte der Kristalle betrug 1.4 g·cm⁻³ (Schwebemethode mit CCl₄ und Pentan).

Tab. 2. Atomkoordinaten und Temperaturfaktoren der Form $\exp\left(-8\pi^2 U\left[\frac{\sin\vartheta}{\lambda}\right]^2\right)$ bzw.

Atom	×	¥	z	U11(or U)	U22	U33	U12	013	U23
BR(1)	0.40599(7)	0.31474(7) 0.1230(4)	0.051(1)	0.060(1)	0.0598(8)	0.0008(8)	-0.001(2)	-0.002(2)
C(11)	0.2042(8)	0.1026(8)	0.140(5)	0.07(1)	0.11(1)	0.03(3)	0.032(9)	-0.03(2)	-0.01(1)
C(12)	0.1705(8)	0, 1653(9)	0.064(1)	0,05(1)	0.07(1)	0.05(1)	D.007(9)	0.010(9)	D.00(1)
C(13)	0.180(1)	0.245(1)	0.101(1)	Q.16(2)	0.08(1)	0.03(2)	-0.02(1)	0.00(1)	0.00(1)
C(21)	0.1542(8)	0.4552(7)	0,608(4)	0.09(1)	0.08(1)	0.01(2)	-0.026(8)	-0.01(1)	0.01(1)
C(22)	0.089(1)	0,4195(9)	0.564(1)	0.06(1)	0.06(1)	0.06(1)	-0.007(9)	-0.01(1)	0.019(9)
C(23)	0.010(1)	0.428(1)	0.609(2)	0.07(1)	0.15(2)	0.09(2)	-0.01(1)	-0.01(2)	-0.04(2)
0(1)	0.1397(6)	0,1522(6)	-0.0163(8)	0.069(8)	0.071(8)	0.057(8)	0.010(6)	-0.015(6)	0.001(6)
0(2)	0.1010(6)	0.3854(6)	0.4843(8)	0.078(8)	0.067(7)	0.647(8)	-0.006(6)	-0.009(7)	-0.009(6)
LI(1)	0.078(1)	0.198(1)	-0.130(6)	0.054(7)					
H(111)	0.2294	0.1224	0.1959	0.08600					
H(112)	0.2475	0.06712	0,08723	0.08000					
H(113)	0.1569	0.05947	0,1487	0.08000					
H(131)	0.2107	0.2465	0.1739	0.05000					
H(132)	D.1249	0.2754	0.1114	0.08000					
H(133)	0.2157	0,2817	0.05021	0.08000					
H(211)	0.1406	0.4788	0.6860	0.08000					
H(212)	0.1876	0.4926	0.5701	0.08000					
H(213)	0.1981	0.4036	0.6346	0.08000					
H(231)	0.00996	0,4636	0.6734	0,08000					
H(232)	-0.02076	0.3779	0.6123	0.08000					
H(233)	-0.02338	0.4680	0.5468	0.08000					

 $\exp[-2\pi^2(U_{11}h^2a^{*2} + ... + 2 U_{12}hka^*b^* + ...)]$ von 1·2 (CH₃)₂CO; die Standardabweichungen (in Klammern) beziehen sich auf die jeweils letzte angegebene Dezimalstelle

Tab. 3. Atomabstände [Å] und Winkel [°] von [2 1 · 4 (CH₃)₂CO]

$\begin{array}{lll} Br(1)-Li(1) & 2.51(2) \\ C(12)-O(1) & 1.22(2) \\ Li(1)-O(1) & 2.0(1) \end{array}$	Br(1)-1 C(21)- Li(1)-0	Li(1') 2.55(2) C(22) 1.40(3) D(2) 1.9(1)	C(11)-C(12) C(22)-C(23)	1.59(4) 1.49(3)	C(12) - C(13) C(22) - O(2)	1.45(2) 1.23(2)
$\begin{array}{l} Li(1) - Br(1) - Li(1') \\ C(13) - C(12) - O(1) \\ C(23) - C(22) - O(2) \\ Br(1) - Li(1) - O(1) \\ O(1) - Li(1) - O(2) \end{array}$	78.5(6) 121.(1) 123.(1) 115.(2) 96.0(9)	C(11) - C(12) - C(22) - C(22) - C(22) - Li(1) - Li(1) - Li(1) - Li(1) - C(12) - O(1) - C(12) - C(12) - O(1) - C(12) -	- C(13) 112.(1) - C(23) 121.(2) Br(1') 101.4(6 O(2) 112.(2) Li(1) 145.(1)	C(11) C(21) Br(1)- Br(1)- C(22)-	-C(12) - O(1) -C(22) - O(2) -Li(1) - O(1) -Li(1) - O(2) -O(2) - Li(1)	127.(1) 116.(2) 112.(2) 120.(2) 144.(1)

Röntgenstrukturanalyse von [2 1 · 4 (CH₃)₂CO]^{*)}: Summenformel C₆H₁₂BrLiO₂, Molmasse 202.99; kristallographische Daten: tetragonal, Raumgruppe $I4_1/a$, a = 17.15, c = 13.38 Å; V = 3935.4 Å³ bei -115 °C, Z = 4, $d_x = 1.40$ g · cm⁻³. Ein Einkristall wurde in einem

Tab. 4. Atomkoordinaten und Temperaturfaktoren der Form $\exp\left(-8\pi^2 U\left[\frac{\sin\vartheta}{\lambda}\right]^2\right)$ bzw.

 $\exp[-2\pi^2(U_{11}h^2a^{*2} + ... + 2 U_{12}hka^*b^* + ...)]$ von [2 2 · 2 DMPU]; die Standardabweichungen (in Klammern) beziehen sich auf die jeweils letzte angegebene Dezimalstelle

A									
C(1)	0 8055/0	y	z	U11(or U)	U22(or P	P) U33	012	U13	⊔23
C(1) C(2) C(3) C(4) C(5) C(6) C(6) C(10) C(11) C(12) C(0.8055(3 0.8608(3) 0.8668(3) 0.8668(3) 0.7617(3) 0.7951(4) 0.7951(4) 0.7951(4) 0.9143(3) 0.8673(3) 0.8673(3) 0.8673(3) 0.8673(3) 0.8673(3) 0.8673(3) 0.8673(3) 0.8212(3) 0.8224(3) 0.8224(3) 0.8224(3) 0.8224(3) 0.8224(3) 0.8224(3) 0.8224(3) 0.8224(3) 0.8224(3) 0.8224(3) 0.8225(3) 0.8255(2) 0.8255(0.2087(6) 0.0843(8) 0.032(8) 0.3266(8) 0.346(8) 0.346(8) 0.346(8) 0.346(8) 0.346(8) 0.346(8) 0.346(8) 0.346(8) 0.346(8) 0.346(8) 0.346(8) 0.346(8) 0.346(8) 0.346(8) 0.3477(8) 0.3464(8) 0.3464(8) 0.3464(8) 0.3532(7) 0.3644(8) 0.3534(7) 0.366(7) 0.366(7) 0.366(7) 0.366(7) 0.3747(6) 0.3747(1) 0.366(7) 0.334(1) 0.3263(1) 0.3264(2) 0.334(1) 0.3263(1) 0.3264(2) 0.334(1) 0.3263(4) 0.3263(4) 0.3205(4) 0.3205(4) 0.32054(4)	0.2400(3) 0.3012(3) 0.2050(3) 0.2267(3) 0.3197(3) 0.3197(3) 0.3619(3) 0.3619(3) 0.3645(3) 0.3645(3) 0.03645(3) 0.0775(3) 0.0775(3) 0.012(3) 0.0252(3) 0.0421(3) 0.0420	$\begin{array}{c} 0.\ 0.18 (3) \\ 0.\ 0.224 (3) \\ 0.\ 0.24 (3) \\ 0.\ 0.24 (3) \\ 0.\ 0.234 (4) \\ 0.\ 0.234 (4) \\ 0.\ 0.234 (4) \\ 0.\ 0.234 (4) \\ 0.\ 0.235 (4) \\ 0.\ 0.235 (4) \\ 0.\ 0.235 (4) \\ 0.\ 0.235 (4) \\ 0.\ 0.235 (4) \\ 0.\ 0.225 (3) \\ 0.\ 0.225 (3) \\ 0.\ 0.223 (3) \\ 0.\ 0.223 (3) \\ 0.\ 0.223 (3) \\ 0.\ 0.223 (3) \\ 0.\ 0.223 (3) \\ 0.\ 0.223 (3) \\ 0.\ 0.223 (3) \\ 0.\ 0.223 (3) \\ 0.\ 0.233 (4) \\ 0.\ 0.233 $	$\begin{array}{c} 0.031(4)\\ 0.022(4)\\ 0.032(4)\\ 0.034(4)\\ 0.038(4)\\ 0.038(4)\\ 0.038(4)\\ 0.038(4)\\ 0.038(4)\\ 0.038(4)\\ 0.038(4)\\ 0.038(4)\\ 0.038(4)\\ 0.038(4)\\ 0.038(6)\\ 0.038(4)\\ 0.038(6)\\ 0.038(4)\\$	$\begin{array}{c} 0.33(3)\\ 0.021(3)\\ 0.037(4)\\ 0.037(4)\\ 0.037(4)\\ 0.035(5)\\ 0.041(4)\\ 0.063(5)\\ 0.041(4)\\ 0.063(5)\\ 0.053(5)\\ 0.053(4)\\ 0.077(5)\\ 0.045(4)\\ 0.036(3)\\ 0.045(4)\\ 0.036(3)\\ 0.047(4)\\ 0.038(3)\\ 0.047(4)\\ 0.044(3)\\ $	-0.004(3) -0.001(3) -0.001(3) 0.000(3) 0.002(3) 0.002(3) 0.002(4) -0.005(3) 0.005(4) -0.005(4) -0.005(4) -0.002(4) -0.002(4) -0.002(4) -0.002(4) -0.002(4) -0.002(4) -0.002(4) -0.002(4) -0.003(3) -0.003(3) -0.003(3) -0.003(3) -0.003(3) -0.005(3) -	-C.002(3) C.003(3) C.003(3) C.002(3) C.002(3) C.002(3) C.002(3) C.002(3) C.002(3) C.003(4) C.	-0.002(4) 0.001(3) -0.001(3) -0.001(3) -0.003(5) -0.003(5) -0.003(5) -0.003(4) -0.004(3) 0.0024(3) -0.0004(3)
ATOM	×	¥	z	u	ATOM	×	•	z	44
$\begin{array}{l} H(021) \\ H(32) \\ H(34) \\ H(34) \\ H(34) \\ H(36) \\ H$	0.815(2) 0.875(2) 0.824(4) 0.684(3) 0.654(3) 0.775(3) 0.775(3) 0.775(3) 0.767(3) 0.830(4) 0.830(4) 0.830(4) 0.846(3) 0.8	$\begin{array}{c} 0.061(5)\\ 0.522(4)\\ -0.119(5)\\ 0.027(9)\\ 0.387(6)\\ 0.225(7)\\ 0.225(7)\\ 0.225(7)\\ 0.245(6)\\ 0.225(7)\\ 0.424(7)\\ 0.438(6)\\ -0.258(7)\\ -0.258(7)\\ -0.137(6)\\ -0.258(7)\\ -0.261(6)\\ 0.027(6)\\ -0.261(6)\\ 0.027(6)\\ -0.268(6)\\ 0.349(5)\\ 0.348(5)\\ 0.348(5)\\ 0.385(8)\\ 0.855(8)\\ \end{array}$	$\begin{array}{c} 0.344(2)\\ -0.005(2)\\ -0.183(2)\\ 0.182(5)\\ 0.245(3)\\ 0.315(3)\\ 0.300(3)\\ 0.405(2)\\ 0.391(2)\\ 0.391(2)\\ 0.391(2)\\ 0.391(2)\\ 0.345(3)\\ 0.327(3)\\ 0.345(3)\\ 0.327(3)\\ 0.345(3)\\ 0.327(3)\\ 0.380(2$	0.03(1) 0.03(1) 0.03(1) 0.05(4) 0.05(4) 0.05(2) 0.07(2) 0.05(2) 0.05(2) 0.05(2) 0.05(2) 0.07(2) 0.07(2) 0.07(2) 0.07(2) 0.07(2) 0.07(2) 0.07(2) 0.07(2) 0.07(2) 0.07(2) 0.07(2) 0.07(2) 0.04(2) 0.05(2) 0.04(2	$\begin{array}{c} H(\ '11)\\ H(\ '12)\\ H(\ '15)\\ H(\ '22)\\ H(\ '23)\\ H(\ '23)\\ H(\ '4)\\ H(\ '61)\\ H(\ '61)\\ H(\ '62)\\ H(\ '62)\\$	0.751(3) 0.681(3) 0.919(3) 0.919(3) 0.919(3) 0.926(3) 0.7911 0.8605 0.996(4) 0.996(4) 0.855(6) 0.855(6) 0.855(6) 0.855(6) 0.855(6) 0.857(4) 0.857(6) 0.857(6) 0.867(2) 0.867(2) 0.867(2) 0.867(2) 0.867(2) 0.994(4) 0.867(2) 0.927(3) 0.927(3) 0.927(3) 0.927(3) 0.927(3) 0.927(3) 0.927(3) 0.927(2	$\begin{array}{c} 0.539(6)\\ 0.800(5)\\ 0.244(7)\\ -0.3287\\ 0.244(7)\\ -0.3287\\ 0.244(7)\\ -0.451(8)\\ 0.0461\\ 0.0461\\ 0.0461\\ 0.0461\\ 0.0461\\ 0.735(8)\\ 0.04(1)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.735(8)\\ 0.380(5)\\ 0.380(5)\\ 0.228(5)\\ 0.228(5)\\ 0.228(5)\\ 0.228(5)\\ 0.235(5)\\ 0$	$\begin{array}{c} -0.033(3)\\ 0.083(2)\\ 0.123(3)\\ -0.123(3)\\ -0.123(3)\\ -0.150\\ -0.150\\ -0.150\\ -0.150\\ -0.150\\ -0.150\\ -0.254(5)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.023(4)\\ -0.036(3)\\ -0.165(2)\\ -0.366(4)\\ -0$	

Chem. Ber. 119 (1986)

Mark-Röhrchen mit Hexadecan fixiert. Die Reflexe wurden mit einem Enraf-Nonius-CAD4-Diffraktometer gemessen [Graphit-Monochromator; Mo- K_{α} -Strahlung; bis $\Theta = 25^{\circ}$: 1819 Reflexe, davon 583 mit $I > 3\sigma(I)$]. Die Struktur wurde mit dem Programm MULTAN 80 gelöst. Nach fünf Zyklen isotroper Verfeinerung konnte das Li-Atom mit Hilfe einer Differenz-Fourier-Karte ermittelt werden. Durch anisotrope Verfeinerung der Nichtwasserstoffatome (Li isotrop) und Berechnung der Positionen der Wasserstoffatome (siehe Tab. 2 und 3) erhielt man nach Wichtung mit $1/\sigma^2(F)$ einen *R*-Wert von 0.042 ($R_w = 0.047$).

Herstellung von Kristallen mit der Zusammensetzung Lithium-(5-tert-butyl-2,2-dimethyl-3,5-hexadien-3-olat) \cdot 3,4,5,6-Tetrahydro-1,3-dimethyl-2(1H)-pyrimidinon ($2 \cdot DMPU$): Zu 5.0 mmol Lithiumdiisopropylamid in 3 ml absol. Ether tropfte man bei $-20^{\circ}C$ 500 mg (5 mmol) Pinakolon. Nach 30min. Rühren wurde das Lösungsmittel bei $-20^{\circ}C$ i. Hochvak. verdampft. Durch Zugabe von 5 ml Ether, 750 mg (5 mmol) DMPU und kurzfristiges Erwärmen auf Raumtemp. wurde eine schwach gelbe, trübe Lösung hergestellt. Nach 24stdg. Aufbewahren bei $-20^{\circ}C$ wurde die Mutterlauge mit einer Spritze entfernt; die Kristalle wurden mit einem Gemisch aus Hexan/Ether (1:1) gewaschen und i. Hochvak. getrocknet.

Tab. 5. Atomabstände [Å] (links) und Winkel [°] (rechts) von [2 2 · 2 DMPU]; der jeweils zweite Wert bezieht sich auf die mit einem Strich gekennzeichneten Atome in der kristallographisch unabhängigen zweiten Einheit des Dimeren

O(1) - C(1)	1.31(1)	1.31(1)	O(1) - C(1) - C(2)	123 2(5)	123 6(5)
C(1) - C(2)	1.36(1)	1.35(1)	C(1) - C(2) - C(3)	127.1(5)	127.7(5)
C(2) - C(3)	1.46(1)	1.47(1)	C(2) - C(3) - C(4)	123.4(5)	121.4(5)
C(3) - C(4)	1.34(1)	1.35(1)	O(1) - C(1) - C(5)	114.4(5)	114.1(5)
C(1) - C(5)	1.53(1)	1.55(1)	C(2) - C(1) - C(5)	122.4(5)	122.3(5)
C(5) - C(6)	1.54(1)	1.53(1)	C(2) - C(3) - C(9)	114.5(5)	116.7(5)
C(5) - C(7)	1.54(1)	1.55(1)	C(4) - C(3) - C(9)	122.0(5)	121.8(6)
C(5) - C(8)	1.53(1)	1.53(1)	O(2) - C(13) - N(1)	119.8(5)	121.0(5)
C(3) - C(9)	1.55(1)	1.51(1)	O(2) - C(13) - N(2)	121.1(5)	120.2(5)
C(9) - C(10)	1.54(1)	1.54(1)	N(1) - C(13) - N(2)	119.1(5)	118.7(4)
C(9) - C(11)	1.51(1)	1.54(1)	C(1) - O(1) - Li(1)	150.1(5)	152.2(4)
C(9) - C(12)	1.55(1)	1.55(1)	C(1) - O(1) - Li(1)	122.3(4)	119.5(4)
O(2) - C(13)	1.25(1)	1.24(1)	Li(1) - O(1) - Li('1)	87.3(4)	85.9(4)
N(1) - C(13)	1.34(1)	1.35(1)	O(1) - Li(1) - O(2)	121.6(6)	120.7(5)
N(2) - C(13)	1.36(1)	1.36(1)	O(1) - Li(1) - O('1)	93.1(5)	93.6(4)
Li(1) - O(1)	1.84(1)	1.86(1)	O(2) - Li(1) - O('1)	135.1(6)	134.8(5)
Li(1) - O(2)	1.87(1)	1.85(1)			
Li(1) - O('1)	1.94(1)	1 .9 1(1)			

Röntgenstrukturanalyse von [2 2 · 2 DMPU]*: Summenformel C₃₆H₆₆N₄O₄Li₂, Molmasse 632.82; kristallographische Daten: orthorhombisch, Raumgruppe Pca2₁, a = 18.371, b = 9.735, c = 21.463 Å; V = 3913.7 Å³ bei -120 °C, Z = 4, $d_x = 1.07$ g·cm⁻³. Ein Einkristall wurde mit Hexadecan unter N₂ in einem Mark-Röhrchen fixiert. Die Reflexe wurden mit einem Enraf-Nonius-CAD4-Diffraktometer gemessen [Graphit-Monochromator; Mo-K_a-Strahlung; bis $\Theta = 25^{\circ}$: 3511 Reflexe, davon 1548 mit $I > 3 \sigma(I)$]. Die Struktur wurde

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 51437, des Autors und des Zeitschriftenzitats angefordert werden.

durch Direkte Methoden (MULTAN 80) gelöst. Die C-, Li-, N- und O-Atome wurden mit anisotropen, die H-Atome mit isotropen Temperaturfaktoren verfeinert mit Ausnahme eines ungeordneten C-Atoms in einem der DMPU-Moleküle, dessen beide Positionen mit berechneten Wasserstofflagen isotrop verfeinert wurden (siehe Tab. 4 und 5). Der gewichtete R_{w} -Wert konvergierte bei 0.045 [$w = \sigma^{-2}(F) \cdot \exp(r \cdot \sin^{2}\Theta/\lambda^{2}), r = 4.5$].

- ²⁾ Teilweise aus der Dissertation von R. Amstutz [ETH Zürich, Nr. 7210 (1983)].
- ³⁾ D. Seebach, J. Hansen, P. Seiler und J. M. Gromek, J. Organomet. Chem. 285, 1 (1985). ⁴⁾ M. Schlosser, Struktur und Reaktivität polarer Organometalle, S. 113, Springer, Heidelberg 1973.
- ⁵⁾ D. Lozach, G. Molle, P. Bauer und J. E. Dubois, Tetrahedron Lett. 24, 4213 (1983); J. Toullec, M. Mladenova, F. Gaudemar-Bardone und B. Blagoev, Tetrahedron Lett. 24, 589 (1983).
- ⁶⁾ N. T. Anh und O. Eisenstein, Nouv. J. Chim. 1, 61 (1977).
- ¹⁾ J.-M. Lefour und A. Loupy, Tetrahedron 34, 2597 (1978).
- ⁸⁾ E. Kaufmann, P. von R. Schleyer, K. N. Houk und Y.-D. Wu, persönliche Mitteilung: J. E. Del Bene, M. J. Frisch, K. Raghavachari, J. A. Pople und P. von R. Schleyer, J. Phys. Chem. 87, 73 (1983); D. J. Raber, N. K. Raber, J. Chandrasekhar und P. von R. Schlever, persönliche Mitteilung.
- ⁹⁾ W. R. G. Bell, C. B. Rowlands, I. J. Bamford, W. G. Thomas und W. J. Jones, J. Chem. Soc. 1930, 1927.
- ¹⁰⁾ L. Pauling, The Nature of the Chemical Bond, Kapitel 10, Cornell University Press, Ithaca 1944.
- ¹¹⁾ T. Mukhopadhyay und D. Seebach, Helv. Chim. Acta 65, 385 (1982).
- ¹²⁾ R. Amstutz, W. B. Schweizer, D. Seebach und J. D. Dunitz, Helv. Chim. Acta 64, 2617 (1981).
- ¹³⁾ G. Chioccola und J. J. Daly, J. Chem. Soc. A 1968, 568.
- ¹⁴⁾ J. D. Dunitz, X-Ray Analysis and the Structure of Organic Molecules, S. 323, Cornell University Press, Ithaca 1979.
- ¹⁵⁾ P. Chakrabarti und J. D. Dunitz, Helv. Chim. Acta 65, 1482 (1982).
- ¹⁶⁾ J. Verbist, R. Meulemans, P. Piret und M. van Meerssche, Buil. Soc. Chim. Belg. 79, 391 (1970).
- ¹⁷⁾ N. Takahashi, I. Tanaka, T. Yamane, T. Ashida, T. Sugihara, Y. Imanishi und T. Higashimura, Acta Crystallogr., Sect. B 33, 2132 (1977).
- ¹⁸⁾ R. Meulemans, P. Piret und M. van Meerssche, Acta Crystallogr., Sect. B 27, 1187 (1981).
- ¹⁹⁾ J. P. Declercq, R. Meulemans, P. Piret und M. van Meerssche, Acta Crystallogr., Sect. B **2**7, **5**39 (1971).
- ²⁰⁾ P. Piret, Y. Gobillon und M. van Meerssche, Bull. Soc. Chim. Fr. 1963, 205.
- ²¹⁾ R. H. van der Veen, R. M. Kellogg, A. Vos und T. J. van Bergen, J. Chem. Soc., Chem. Commun. 1978, 923.
- ²²⁾ F. J. Hollander, M. Leitheiser und D. Coucouvanis, Inorg. Chem. 16, 1615 (1977).
 ²³⁾ ²³a) P. Chakrabarti, K. Venkatesan und C. N. R. Rao, Proc. R. Soc. London, Ser. A 375, 127 (1981). ^{23b)} P. Chakrabarti, persönliche Mitteilung.
 ²⁴⁾ Bei 2 werden, wenn nicht anders vermerkt, die Mittelwerte aus den beiden im Kristall
- unabhängig bestimmten Molekülen angegeben.
- ²⁵⁾ R. D. Rogers, J. L. Atwood, M. D. Rausch, D. W. Macomber und W. P. Hart, J. Organomet. Chem. 238, 79 (1982).

[124/85]

¹⁾ Die ersten Untersuchungen hierüber führte P. Chakrabarti durch (Ph. D. Thesis, University of Bangalore, Indien, Januar 1981).